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Abstract

Temporal community stability, here defined as temporal mean divided by

temporal SD, plays an important role in predicting certain ecosystem ser-

vices. However, temporal stability can change with invasion, with greater

abundances of invasive species potentially having greater impacts on native

community stability. The exact consequences of invasion for temporal sta-

bility are unclear and, in part, depend on the particular metric of stability

measured. In rangeland ecosystems, predicable forage is important for live-

stock production but can be threatened by invasion. Therefore, using an

observational field study conducted over three years in Wyoming, we

assessed which metrics of plant community stability were altered by inva-

sion and whether those effects were mediated by two environmental vari-

ables (light and soil moisture). Bromus arvensis and Bromus tectorum are

two invasive annual weeds found across US rangelands, including the

northern mixed-grass prairies of Wyoming. We established plots along nat-

ural invasion blocks of B. arvensis and B. tectorum abundance and collected

plant species composition data over three growing seasons. We tested asso-

ciations between seven different metrics of plant community stability and

invasion by B. arvensis and B. tectorum. We found that species turnover

increases with invasion by both species, while stability of forb (both brome

species), C4 grass (B. arvensis only), and C3 grass (B. tectorum only) cover

decreases with invasion. All metrics of stability associated with invasion

supported the hypothesis of a destabilizing effect of invasion on the native

plant community. Further, we found that light and soil moisture did medi-

ate some associations between stability and invasion. Overall, our results

align with previous work suggesting that invasive annual bromes can lead

to decreased native plant stability, which has important implications for

forage production and, thus, food security.
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INTRODUCTION

Temporal stability, defined here described as temporal
mean divided by temporal SD (Lehman & Tilman, 2000),
alters ecosystem dynamics (Ebel et al., 2022) and function-
ing (Loreau & de Mazancourt, 2013). Importantly, temporal
stability can also impact provisioning of services, with tem-
porally stable communities leading to better prediction of
certain ecosystem services (e.g., consistent pollination lead-
ing to reliable crop yield; Montoya et al., 2019). Like most
ecosystem properties, temporal community stability can be
altered by invasive species (Valone & Balaban-Feld, 2018).
Frequently, invasion is linked to decreased species richness,
evenness, and diversity (Hejda et al., 2009; Xu et al., 2022),
suggesting invasion should decrease stability, as high native
diversity can increase community stability (Tilman et al.,
2006). However, previous work is equivocal on the effects of
invasion on temporal stability, and response may depend
on the specific community and measure of stability
(Pfisterer et al., 2004; Valone & Balaban-Feld, 2018).
Further, the response of native communities to invasion
depends on invasion degree, where increased dominance by
invasives can lead to greater impacts on the native commu-
nity (Brummer et al., 2016).

Grasslands, covering nearly 40% of Earth’s terrestrial
surface (Gibson, 2009), are commonly used as rangeland,
providing natural grazing areas for livestock and
supporting the livelihoods of billions around the world
(Sayre et al., 2013). However, grasslands are threatened
by global change, including widespread invasive plant spe-
cies (DiTomaso, 2000; McCollum et al., 2017). While ecosys-
tem heterogeneity in space and time is important for
certain conservation objectives, such as wildlife habitat cre-
ation (Fuhlendorf & Engle, 2001), temporal stability also
supports objectives associated with other ecosystem ser-
vices. Stability of key palatable forage species on rangelands
is critical for ranchers and land managers who rely on pre-
dictable forage abundance each year (Bonin & Tracy, 2012;
Sasaki & Lauenroth, 2011), especially under natural
(e.g., drought) and human-induced disturbances (e.g., graz-
ing) (Haughey et al., 2018).

Across arid and semiarid regions of North America,
invasive annual grasses have significantly altered the land-
scape, changing portions of many ecoregions such as the
Great Basin and Great Plains from communities dominated
by perennial grasses to dominance by invasive annual
grasses (D’Antonio & Vitousek, 1992; Davies et al., 2021).
This dominance shift has led to changes in rangeland pro-
ductivity, including increased annual variability in herba-
ceous forage production (Bradley & Mustard, 2005; Clinton
et al., 2010), as yearly abundance of invasive annual grasses
tightly depends on resource availability (Bradley et al.,
2016). Invasive annuals decrease native plant abundance

and diversity, as invasive annuals outcompete native spe-
cies by utilizing resources and growing rapidly earlier in
the growing season (Davies, 2011; Melgoza et al., 1990).
Bromus arvensis and B. tectorum are winter annual C3

brome grasses that are well-established invasives throu-
ghout the North American Great Plains, especially in
Northern mixed-grass prairies (Hulbert, 1955; Oja et al.,
2003), which are biodiverse and essential as working
rangeland (Samson et al., 2004). Though these annual
brome species were introduced intentionally as forage for
livestock and provide quality forage in spring, upon
flowering in ~mid-June, they become very low-quality for-
age and decrease in protein percentage by ~97% after matu-
ration (Chambers et al., 2007; Morrow & Stahlman, 1984).
Because of this, for long-term stability of forage usage on
rangelands and ultimately food security, it is important to
understand how invasive annual bromes impact native
plant community stability (Ziska et al., 2011).

Using an observational field study conducted over three
growing seasons, we assessed changes in plant community
stability with invasion. We used blocks of invasion abun-
dance to study the effects of two invasive annual grasses
(B. arvensis and B. tectorum), as impacts of invasion on
native plants vary depending on invasion abundance
(Brummer et al., 2016). Further, while there are many defi-
nitions of stability, such as those associated with constancy,
resilience, and resistance (Grimm et al., 1992), here we
assess several metrics of temporal stability of the plant com-
munity, as well as synchrony and species turnover, to deter-
mine which aspects of community stability change with
invasion. We hypothesized that invasive bromes would
associate with instability in the plant community, but that
increasing brome invasion would result in higher species
turnover. Invasive plants increase native plant species turn-
over by hindering reappearance of resident native species
(Somodi et al., 2008), while negatively impacting commu-
nity stability (Walker & Smith, 1997). Second, we assessed
whether patterns of community stability associated with
invasion were mediated by stability of environmental fac-
tors (light transmittance to the soil surface and soil mois-
ture). Invasive annual bromes can decrease light at the soil
surface (Vinton & Goergen, 2006) and deplete soil moisture
early in the growing season (Souther et al., 2020). Thus, we
explored the direct and indirect (via light and soil moisture)
effects of invasion on community stability.

METHODS

Site description

Northern mixed-grass prairies cover 38% of grassland
area in North America (Lauenroth, 1979) and are
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important regions for biodiversity and livestock produc-
tion, with up to 50% used for livestock grazing (Holechek
et al., 2011). We conducted our study in Converse County
in northeastern Wyoming (43.30� N, −105.05� W) on pri-
vately owned, working rangeland within the Thunder
Basin ecoregion, a 7000-km2 region centered on the
United States Forest Service-managed Thunder Basin
National Grassland (Porensky et al., 2018). Climate in
this shrubland-grassland ecotone is semiarid (30-year
mean annual precipitation = 363 mm/year, with
40%–50% of precipitation in April–June; mean temper-
ature ranges from −5�C in December to 22�C in July;
elevation = 1097–1585 m above sea level) (Connell
et al., 2019; NOAA National Centers for Environmental
Information, 2022). During this study, annual precipitation
in Converse County, WY, was 390.7 mm (2019), 216.4 mm
(2020), and 341.6 mm (2021) (Appendix S1: Figure S1,
NOAA National Centers for Environmental Information,
2022). Common native plant species include Artemisia
tridentata (Wyoming big sagebrush), Bouteloua gracilis
(blue grama), Carex filifolia (threadleaf sedge), Hesperostipa
comata (needle-and-thread grass), Pascopyrum smithii
(Western wheatgrass), Plantago patagonica (wooly plan-
tain), Sphaeralcea coccinea (scarlet globemallow), and
Opuntia polyacantha (Plains prickly pear) (Porensky
et al., 2018).

Study design

Data collection and study design were consistent across
all three study years from 2019 to 2021. In July 2019, we
established blocks of plots varying in invasion abundance
in Wyoming. Each block consisted of five permanent,
1 × 1 m plots with different levels of invasion (assigned
visually as 0%, 25%, 50%, 75%, and 100% relative cover) of
each respective invasive species grouped together in
space (Figure 1). Invasion levels represent approximate
categorized aerial cover of the invasive annual brome,
but actual cover was assessed through plant species com-
position (Figure 1). B. tectorum and B. arvensis each had
five blocks (50 plots total). Each year in late June/early
July, we collected all data. At each plot, we measured
plant species composition across the plot by visually esti-
mating foliar cover (i.e., calibrated to estimates generated
by a 100 pinpoint intercept frame) for each species to the
nearest percent; species overlap, including by shrubs, was
accounted for as each species cover was estimated inde-
pendently. Thus, theoretically, total cover could have
been over 100%. Additionally, we measured photosyn-
thetically active radiation (PAR) below and above the
plant canopy using an AccuPAR LP-80 Ceptometer to
calculate percent transmittance of light to the soil

surface. Last, we collected soil moisture (percentage volu-
metric water content [VWC]) from the center of each
plot. We measured all abiotic variables (PAR and soil
moisture) from all plots within a 2-h period centered
around mid-day to account for daily variability.

Stability metric calculations

For the stability of richness, total cover (a measure of
abundance and a proxy for total biomass; Mahood
et al., 2021; Ónodi et al., 2017), C4 grass cover, C3 grass
cover, forb cover, light, and soil moisture, we calculated
stability as the temporal mean divided by temporal SD
across all three study years. Essentially, higher stability
numbers indicate, in comparison with the mean value,
the metric does not vary much from year to year. We
used the codyn package to calculate stability (of all vari-
ables), as well as two additional metrics (Hallett
et al., 2016): synchrony (how populations covary over
time; Valencia et al., 2020), calculated with the syn-
chrony function from the codyn package (Loreau & de
Mazancourt, 2008) and species turnover (proportion of
species gained or lost over time in relation to the total
number of species), calculated with the turnover function
from the codyn package (Cleland et al., 2013). A low syn-
chrony value indicates a stable community, and a high
turnover value indicates an unstable community.
Because annual bromes are part of the plant community,
we assessed how turnover, synchrony, and stability of
richness, total cover, and C3 grass cover changed in asso-
ciation with annual brome invasion using two methods:
without (Table 1) and with (Table 2) brome data included
(i.e., with and without B. arvensis data included in
B. arvensis blocks and B. tectorum data included in
B. tectorum blocks). For ease, we refer to the non-brome
plant community as the native plant community.
However, our plant composition data also included low
cover of several introduced annual forbs (Alyssum
desertorum, Camelina microcarpa, Lactuca serriola,
Logfia arvensis, Polygonum aviculare, and Tragopogon
dubius).

Data analysis

To analyze relationships between stability and invasion,
we used linear mixed-model regressions with invasion
abundance as a fixed effect, block as a random effect, and
metrics of stability of as the response variable (lmerTest
package (Kuznetsova et al., 2017). Each metric of stability
(nine in total) was assessed in a separate model. We
assessed fixed effect significance using Type III ANOVA
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F I GURE 1 (A) Approximate plot layout. Blocks were selected randomly across the landscape by identifying areas that had a high

abundance of the two target invasive species. From there, five plots were established by selecting plots that fit into the five categories of

invasion abundance. If a plot could not be found within 10 m of another plot in a block, that block was abandoned, and a new block

established. This created blocks of varying geographic extent, ranging from 200 m × 600 m. (B) Relative percent cover of Bromus arvensis

and Bromus tectorum across categorized invasion levels from 2019 to 2021 (mean ± SE). Solid lines indicate significant relationships between

invasion level and relative invasion cover (p < 0.05). The p values are for the main effect of invasion level from repeated measures

mixed-model ANOVAs.
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with Satterthwaite’s method; Satterthwaite, 1941). We
also examined how average soil moisture and light avail-
ability changed with invasion abundance using the same
model structure. To ensure the blocks of invasion abun-
dance held over time, we used repeated measures
mixed-model ANOVAs. Predictors were invasion levels
(categorical), year (categorical), and the interaction between
invasion level and year; the response variable was the actual
percent brome cover (B. arvensis in B. arvensis blocks and
B. tectorum in B. tectorum blocks), and a random effect of
block was included (Figure 1). For all analyses, we adjusted
for multiple comparisons using Benjamini–Hochberg’s cor-
rection (Benjamini & Hochberg, 1995).

Then following Duchardt et al. (2021), we tested
hypotheses about mediation of the effects of B. arvensis

and B. tectorum on metrics of plant community stability
by light availability and soil moisture. Specifically, we
assessed hypotheses that the effect of each brome species
on each stability metric was mediated by (1) light avail-
ability and (2) soil moisture. We assessed evidence for
direct versus indirect effects of bromes on stability via full
mediation (i.e., the effect of bromes on stability was fully
mediated by light or soil moisture; meaning evidence of
indirect effects only where brome abundance correlated
with stability responses), partial mediation (i.e., the effect
of bromes on stability was partially mediated by light or
soil moisture; meaning evidence of both direct and indi-
rect effects where brome abundance correlated with sta-
bility responses; partial mediation also implies that other,
unmeasured factors may be influencing the relationship

TAB L E 1 Linear mixed-model ANOVA for the response of stability metrics to invasion by annual bromes.

Metric

Bromus arvensis Bromus tectorum

Log
transformation df F Adjusted p

Log
transformation df F Adjusted p

Synchrony No 1, 23.00 0.16 0.692 No 1, 23.00 0.66 0.566

Species turnover No 1, 22.97 6.25 0.080* No 1, 19.579 16.16 0.003**

Richness stability Yes 1, 22.24 2.15 0.312 No 1, 20.00 7.03 0.031**

Cover stability Yes 1, 23.00 0.95 0.453 Yes 1, 23.00 0.13 0.726

C4 grass stability Yes 1, 18.22 6.01 0.037** Yes 1, 20.00 0.03 0.874

C3 grass stability Yes 1, 22.56 1.30 0.266 No 1, 19.62 13.84 0.001**

Forb stability Yes 1, 21.52 6.71 0.037** Yes 1, 16.04 3.85 0.101

Light stability Yes 1, 23.00 42.51 <0.001*** Yes 1, 23.00 25.75 <0.001***

Soil moisture stability Yes 1, 20.85 0.26 0.614 No 1, 20.75 1.41 0.249

Average light availability No 1, 22.14 45.32 <0.001*** No 1, 20.88 75.34 <0.001***

Average soil moisture No 1, 20.10 1.93 0.240 No 1, 20.10 1.59 0.249

Note: Stability of richness, total cover, and C3 grass cover, as well as turnover and synchrony, were calculated without respective brome data for each block

type. Significant values are shown in boldface type, with *p < 0.1; **p < 0.05; ***p < 0.001. The p values were adjusted for multiple comparisons using
Benjamini–Hochberg’s correction.

TAB L E 2 Linear mixed-model ANOVA for the response of stability metrics to invasion by annual bromes.

Metric

Bromus arvensis Bromus tectorum

Log
transformation df F Adjusted p

Log
transformation df F Adjusted p

Synchrony No 1, 23.00 0.92 0.463 No 1, 20.28 1.60 0.293

Species turnover No 1, 22.97 5.50 0.112 No 1, 19.54 13.18 0.007**

Richness stability Yes 1, 22.31 1.81 0.769 No 1, 20.00 5.03 0.073*

Cover stability Yes 1, 23.00 0.18 0.679 Yes 1, 19.90 0.14 0.711

C3 grass stability Yes 1, 23.00 1.21 0.283 Yes 1, 20.12 2.32 0.143

Note: Here, each metric was calculated with respective brome data included for each block type (as opposed to results in Table 1). Of note, we found less

significant results overall when including annual brome data in analyses. The positive relationship between B. tectorum abundance and species turnover is
consistent, while the negative relationship between B. tectorum abundance and richness stability is now marginally significant. Significant values are shown in
boldface type, with *p < 0.1, **p < 0.05. The p values were adjusted for multiple comparisons using Benjamini–Hochberg’s correction.

ECOSPHERE 5 of 14

 21508925, 2024, 10, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.70036, W

iley O
nline L

ibrary on [29/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://esajournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fecs2.70036&mode=


between invasion and stability metrics), or no mediation
(i.e., the effect of bromes on stability was not mediated by
light or soil moisture; meaning evidence of direct effects
only where brome abundance correlated with stability
responses). We used structural equation modeling
(lavaan package; Rosseel, 2012) to build a model
including all links and assessed whether each link was
fully, partially, or not mediated by light or soil mois-
ture (Grace, 2006). We tested for evidence of full
(A ! B ! C), partial (A ! B ! C; A ! C), and no
(A ! C) mediation both by comparing path coeffi-
cients in the partial mediation models and assessing
difference in corrected Akaike information criterion
between models for small sample size (ΔAICc

Burnham & Anderson, 2002) between full, partial, and
no mediation models. Here, A represents annual brome
abundance, B represents light or soil moisture, and C
represents the stability metric (e.g., richness stability).
We used a ΔAICc cutoff of 5 in combination with path
coefficient strength to determine if we had support for
one model over another. Where no consensus could be
made (i.e., conflict between ΔAICc cutoff and path
coefficient strength), we determined no conclusion
could be drawn based on our data. We conducted two
separate mediation analyses—one with stability of
light and soil moisture as mediators and the other with
average light and soil moisture as mediators. Average
light/soil moisture does not directly account for disper-
sion around the mean (SD), which is more robustly
demonstrated by stability metrics. However, because
stability of light and soil moisture may be less familiar,
in our analyses, we demonstrate both can be mediators,
as results were largely the same for each. We used
Chi-square goodness-of-fit tests to assess model fit of
each model. Of note, we found no evidence against
good model fit (p > 0.1 in every case).

We conducted all calculations and analyses in R ver-
sion 3.6.2 (R Core Team, 2019) (α = 0.05, but we report
results with 0.05 < p < 0.1 as marginally significant). We
visually assessed plots of the residuals and Autocorrelation
Function/Partial Autocorrelation Function to look for
evidence of nonlinearity and autocorrelation, respec-
tively, but we did not find evidence of violations of either
assumption in any of our results. To test the assumption
of homoscedasticity, we used Levene’s test for equality
of variances (Levene, 1960). We assessed normality of
the residuals of all response variables using Shapiro–
Wilk, Anderson–Darling, Cramer–von Mises, and
Kolmogorov–Smirnov tests from the Olsrr package
(Hebbali, 2020). We log-transformed data when neces-
sary to achieve approximate normality and homosce-
dasticity (Table 1). We conducted all analyses for
blocks of B. arvensis and B. tectorum separately.

RESULTS

Effectiveness of brome blocks

Invasion abundance held across time for both B. arvensis
and B. tectorum blocks (Figure 1). Percent cover of
B. arvensis and B. tectorum increased with categorical
invasion level (percent) within each year across all three
years of the study (for B. arvensis, invasion level,
F1,67 = 88.3, p < 0.0001; for B. tectorum, invasion level,
F1,67 = 132.5, p < 0.0001). In the B. arvensis blocks, we
also found a significant effect of year on percent cover of
B. arvensis (year, F1,67 = 5.5, p < 0.0001, p = 0.022) but
saw no interaction between invasion level and time
(invasion level × year, F1,67 = 2.3, p = 0.132). In the
B. tectorum blocks, we found no significant effect of year
(year, F1,67 = 0.9, p = 0.345) or interaction between inva-
sion level and year on percent cover of B. tectorum (inva-
sion level × year, F1,67 = 2.6, p = 0.113).

Associations between invasion and
stability metrics

In B. tectorum blocks, native plant species turnover signif-
icantly increased with invasion (44.4% increase), while in
B. arvensis blocks, turnover marginally increased with
invasion (17.0% increase; Figure 2). In the B. arvensis
blocks, stability of C4 grass and forb cover decreased
with invasion cover (47.7% and 73.2% decrease, respec-
tively; Figure 3, Table 1). In the B. tectorum blocks,
native plant species richness stability decreased with
invasion (12.0% decrease) and C3 grass cover stability
significantly decreased with invasion (32.1% decrease;
Figure 3, Table 1). We found no significant impact of
either annual brome species on synchrony or total cover
stability (Figure 2, Table 1). When including B. arvensis
and B. tectorum data in each species’ respective analyses,
we found that species turnover significantly increased
with invasion in B. tectorum blocks only (Table 2).

Stability of light and average light availability signifi-
cantly decreased with invasion by both annual bromes,
while soil moisture stability and average soil moisture
were not related to brome invasion (Table 1; Appendix S1:
Figures S2 and S3, Table S1).

Abiotic mediation of invasion-stability
relationships

In the B. arvensis blocks, we found strong evidence that
stability of light availability fully or partially mediated
the effects of invasion on stability of C4 grass cover, and
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weak evidence of this mediation on stability of forb cover.
We also found weak support that soil moisture stability
fully or partially mediated the effects of B. arvensis on

stability of plant species richness. In the B. tectorum
blocks, soil moisture stability strongly mediated the
effects of invasion on stability of C4 grass cover and

F I GURE 2 Changes in plant species synchrony, species turnover, richness stability, and total cover stability with relative invasion cover

by Bromus arvensis and Bromus tectorum. Stability of richness and total cover, as well as turnover and synchrony, were calculated without

respective brome data for each block type. The p values and marginal R 2 values for significant (solid lines) or marginally significant (dashed

line) effects of invasion on stability metrics are shown according to results from mixed-model ANOVAs (Table 1).
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weakly mediated the effects of invasion on forb cover sta-
bility (Table 3; Appendix S1: Table S2).

In the B. arvensis blocks, we also found evidence that
average light availability fully mediated invasion
effects on C4 grass stability and fully or partially medi-
ated the effect of invasion on forb stability, though sup-
port for this was weaker. Further, we found strong
support that average soil moisture fully or partially
mediated invasion effects on richness stability. In
B. tectorum blocks, we found strong support that aver-
age soil moisture fully or partially mediated the effects
of invasion on C4 grass stability and forb stability
(Table 3; Appendix S1: Table S2).

DISCUSSION

Overall, we found multiple metrics of plant community
stability to be associated with brome invasion. Importantly,
when any stability metric was altered, invasion was asso-
ciated with a destabilizing effect on the plant community.
This is consistent with prior research, where greater dom-
inance by bromes produces less stable native plant abun-
dance (Germino et al., 2016). Richness stability was
associated with B. tectorum invasion. Richness is often
associated with a stable, negative relationship with inva-
sion, though there is evidence that the effect of invasion
on native richness is declining across certain taxa,

F I GURE 3 Changes in stability of C4 grass, C3 grass, and forb cover with relative invasion cover by Bromus arvensis and Bromus

tectorum. Stability of C3 grass cover was calculated without respective brome data for each block type. C4 grass cover was largely dominated

by one species, Bouteloua gracilis. The p values and marginal R 2 values for significant (solid lines) or marginally significant (dashed line)

effects of invasion on stability metrics are shown according to results from mixed-model ANOVAs (Table 1).
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including invasive plants (Crystal-Ornelas & Lockwood,
2020). The variation seen in stability changes could also
indicate that at even low levels of invasion, we can pre-
dict changes to native plant stability, emphasizing the
importance of near-total control of invasive annual
bromes under certain management plans. However, not
all measured metrics of plant community stability were
altered by annual bromes. In some cases, temporal stabil-
ity is not necessarily altered by changes to diversity, espe-
cially where the invasive species is dominant and shows
high stability itself (Valone & Balaban-Feld, 2018). This
could help partially explain our results, as annual brome
cover stayed consistent throughout the study (Figure 1).

Further, some results differed between species. In gen-
eral, measures of stability were more strongly associated
with invasion in B. tectorum blocks, suggesting that this
species may be more disruptive to stability. While
research comparing B. arvensis to B. tectorum is lacking,
we suspect this species difference is partially due to the
greater influence of B. tectorum on light availability
preventing native species dominance. B. tectorum creates
a dense, thick layer of vegetation, essentially blocking out
most light available to lower lying vegetation. While
B. arvensis is similar in blocking most light (Appendix S1:
Figures S2 and S3) at the plot level, it does not create the
same dense vegetation layer, allowing more light between

TAB L E 3 Mediation tests to assess support for direct and indirect effects of invasive annual bromes on plant community stability (see

also Appendix S1: Table S2).

Question Metric Conclusion

(A) Is the effect of Bromus arvensis invasion on X mediated
by abiotic variables (light stability, soil moisture stability)?

Synchrony No conclusion

Species turnover No conclusion

Richness stability Fully or partially mediated by soil moisture stability

Cover stability No conclusion

C4 grass stability Fully or partially mediated by light stability

C3 grass stability No conclusion

Forb stability Fully or partially mediated by light stability

(B) Is the effect of Bromus tectorum invasion on X mediated
by abiotic variables (light stability, soil moisture stability)?

Synchrony No conclusion

Species turnover No conclusion

Richness stability No conclusion

Cover stability No conclusion

C4 grass stability Fully mediated by soil moisture stability

C3 grass stability No conclusion

Forb stability Fully or partially mediated by soil moisture stability

(C) Is the effect of B. arvensis invasion on X mediated by
abiotic variables (average light, average soil moisture)?

Synchrony No conclusion

Species turnover No conclusion

Richness stability Fully or partially mediated by soil moisture

Cover stability No conclusion

C4 grass stability Fully mediated by light

C3 grass stability No conclusion

Forb stability Fully or partially mediated by light

(D) Is the effect of B. tectorum invasion on X mediated by
abiotic variables (average light, average soil moisture)?

Synchrony No conclusion

Species turnover No conclusion

Richness stability No conclusion

Cover stability No conclusion

C4 grass stability Fully or partially mediated by soil moisture

C3 grass stability No conclusion

Forb stability Fully or partially mediated by soil moisture

Note: Mediator variables are (A, B) stability of light availability and soil moisture and (C, D) average light availability and soil moisture. Stability of richness,
total cover, and C3 grass cover, as well as turnover and synchrony, were calculated without respective brome data for each block type. The words stability and
average were bolded to more clearly point out the differences between Questions A and B from Questions C and D.
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individual plants and lower lying species to coexist.
While both species are managed actively in the Northern
Great Plains region, B. tectorum is commonly considered
one of the most problematic invasive species in the
Western United States (DiTomaso et al., 2010).

In both B. arvensis and B. tectorum blocks, species
turnover was related to brome abundance, demonstrating
that even in the short term, invasion can shape commu-
nity structure (Leibold et al., 1997). High species turnover
can lead to deregulation of trophic structures (Leibold
et al., 1997) and functional traits (Lepš et al., 2011).
Decreases in C4 grass (B. arvensis blocks), C3 grass
(B. tectorum blocks), and forb (B. arvensis blocks) cover
stability with invasion suggest possible increases in vari-
ability of forage and pollination availability, as high
abundances of native grasses and forbs improve forage
production and pollinator diversity respectively on
disturbance-adapted rangelands (Drobney et al., 2020;
Shaw et al., 2005). In the B. tectorum blocks, decreases in
richness stability could indicate that invasion is associ-
ated with greater variability in biodiversity. Dominance
by invasive bromes can lead to differences in plant com-
munity composition, compared with native dominated
communities, causing consequences for both above- and
belowground properties of rangeland ecosystems (Duncan
et al., 2004; Gasch et al., 2013). These increases in variabil-
ity are important for rangeland utility, as ranchers rely on
native forage to graze livestock (Haferkamp et al., 2001).
Further, the linear relationships found between stability
and invasion abundance may serve as a target reference
point for managers to implement control strategies.

In several cases, our mediation tests showed that rela-
tionships between invasion and plant community stabil-
ity were mediated by abiotic factors. For example, in both
brome blocks, C4 grass cover stability and forb cover sta-
bility were mediated by light (B. arvensis blocks) or soil
moisture (B. tectorum blocks). Annual bromes can alter
microclimatic conditions, in turn affecting plant commu-
nity composition (Ogle, 2000). C4 grass success often
depends on moderate-high light (Still et al., 2003) and is
influenced by soil moisture (Nie et al., 1992). Similarly,
forb success is related to soil moisture (Fay & Schultz,
2009) and light (Turner & Knapp, 1996), so it is expected
that the relationship between invasion and stability of C4

grass cover and forb cover is mediated by soil moisture
and light. Understanding direct and indirect responses to
invasion is important, as resistance and response to inva-
sion are highly related to the environment (including cli-
mate and soil properties) (Chambers et al., 2014).
Generally, higher native species stability, especially that
of dominant forage species, corresponds to higher resis-
tance to invasive annuals, even on disturbed rangelands
(DiTomaso et al., 2010). Conversely, continued spread

and impact of invasion on native communities are also
related to environmental factors. For instance, high
summer precipitation can increase resistance to brome
invasion, but high variability in soil moisture with low
perennial cover can lead to further invasion (Chambers
et al., 2007). Further, brome dominance is related to
high light availability, while low irradiance hinders
brome establishment (Bookman & Mack, 1983; Pierson
et al., 1990).

For other stability metrics, we were unable to draw
conclusions about the direct or indirect effects of invasion
on plant community stability. In particular, we were
unable to attribute the relationship between invasion and
C3 grass stability to light or soil moisture, possibly
because other, unmeasured variables more strongly
contribute to this relationship, such as soil nitrogen avail-
ability (Vasquez et al., 2008). Nevertheless, it is also nota-
ble that we did not find strong evidence of direct effects
(unmediated by abiotic factors) for any metric. Conflict
in AICc values and estimate significance suggests that
there is not enough evidence in a particular pathway to
determine direct versus indirect effects. Biologically, this
is likely due to confounding, unmeasured factors that
more strongly influence each stability metric. Full versus
partial mediation implies whether the mediator (light or
soil moisture) fully explains the association between sta-
bility and invasion, or if other factors also need to be con-
sidered. Because these exploratory analyses were
conducted with an observational field study, a more con-
trolled experimental manipulation would be useful to
tease apart the direct and indirect effects of invasion on
stability. We also acknowledge that these analyses repre-
sent a first attempt at exploring mediation between stabil-
ity and annual brome invasion. Additional factors, such
as increased sample size, sampling from different time
points (especially moisture through time), and addition
of other environmental mediators such as soil nitrogen,
would likely be beneficial in deciphering how stability is
influenced by bromes. Despite these limitations, media-
tion analyses may allow us to better predict forage and
biodiversity under given environmental conditions.

Interestingly, over this 3-year study, the blocks of
invasion abundance held, suggesting B. arvensis and
B. tectorum abundance in each plot was relatively con-
stant. The first year of the study, 2019, was a relatively
wet year, while year two, 2020, was a relatively dry year,
and year three, 2021, had near average precipitation
(Appendix S1: Figure S1). Yearly brome abundance tends
to be greatly associated with precipitation (Bradley
et al., 2016), so it is somewhat surprising that invasion
abundance held so constant given these differences in
yearly precipitation. However, bromes tend to be more
heavily influenced by fall/winter/spring precipitation
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(Bradley et al., 2016), which had less variability over the
course of the study than later spring/summer precipita-
tion (Appendix S1: Figure S1).

To our knowledge, this study is the first to explore
possible influences of annual bromes, especially the
understudied B. arvensis, on stability metrics. This study
also addresses both familiar and novel metrics of stability,
including a first attempt to understand how environmen-
tal variables mediate annual bromes’ influence on stabil-
ity. Understanding how temporal stability changes with
invasion has important consequences for ecosystem ser-
vices like food security, and even restoration potential of
invaded range. Native plant production is critical to
range-fed livestock. The forage quality of invasive annual
bromes is known to peak early in the growing season and
decline rapidly relative to native vegetation, which can
negatively impact livestock performance and animal mass
gain (Haferkamp et al., 2001). In addition, invasion by
annual species, coupled with year to year variability in cli-
mate, can impact restoration success, as unstable native
cover may lead to long-term changes in soil properties
(Mahood et al., 2022). In general, we found that annual
bromes were associated with destabilization of plant com-
munities, including metrics associated with native forage
(stability of C3 grass, C4 grass, and forb cover). Therefore,
annual brome invasion may increase the need for adaptive
management to cope with increased interannual variabil-
ity in forage quantity and quality (Monaco et al., 2016), as
this may have unforeseen consequences for the livelihoods
of billions of people worldwide who depend on working
rangeland (Sayre et al., 2013).
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